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Abstract
H –T magnetic phase diagrams of the Ho0.43Y2.57Fe5O12 garnet, due to spin-reorientation
transitions, have been determined in the low temperature range (2–30 K) by magnetization
measurement under high static magnetic fields (23 T) on [111] and [110] oriented single
crystals. It is shown that a very good agreement between computed and observed phase
diagrams can be achieved when the free energy is calculated by direct diagonalization of a
Hamiltonian including the crystal field (CF) and the exchange interactions considered in the
mean-field formalism.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The rare-earth iron garnets (REIG) are oxide crystals with
cubic structure (space group Ia3d-(O10

h ), no. 230). They
are commonly written as {R3+

3 }[Fe3+
2 ](Fe3+

3 )O12 (where R
denotes a rare-earth element or yttrium) with eight of these
formula units per unit cell. The oxygen anions O2−, in
general positions 96h (x, y, z), define three types of interstices
over which the distribution of the cations is well fixed.
These are specified by { }, [ ] and ( ), which refer to
24c (dodecahedral), 16a (octahedral) and 24d (tetrahedral),
respectively. All the interactions are negative, and the strong
negative superexchange interactions between the spins of Fe3+
[a] and Fe3+ (d), determine the Néel temperature (TN ∼ 560 K)
for all REIGs.

Numerous studies have been dedicated to the high-field
magnetic transitions in the ferrimagnetic mixed holmium–
yttrium iron garnet Hox Y3−x Fe5O12 (x < 0.8) com-
pounds [1–11]. Most of them were carried out under high
pulsed magnetic fields [1–9]. The major motivation was to

5 Author to whom any correspondence should be addressed (preferably via
e-mail or second affiliation address).

get accurate estimates of the parameters underlying the mech-
anism of the most interesting behavior of these compounds,
namely the discontinuous field-induced transitions which occur
below some critical temperature T ∗, depending on the concen-
tration x . Indeed, in these compounds, under external magnetic
fields, the competing effects of a large exchange interaction
with a large crystal-field interaction result in phase diagrams
whose transition lines are directly connected to energy levels
of the trivalent holmium ion, in other words, to exchange and
crystal-field parameters.

The garnet unit cell contains 12 distinct rare-earth {c}
sites; six inequivalent ones need be considered because of
calculus invariance with inversion (see section 3). At each
of these dodecahedral sites, the local symmetry is only D2

and the Ho3+ magnetic moment becomes strongly anisotropic
at low temperatures, causing the actual magnetic structure
to deviate from Néel’s collinear ferrimagnetic model: the
six magnetic moments of the rare-earth sublattices form a
double-umbrella-shaped structure with the resultant moment
MHo directed along the easy axis 〈111〉 and antiparallel to the
resultant moment of the iron sublattice [12–14] (see figure 3).
The iron resulting moment MFe is equal to the difference of
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moments between [a] and (d) sites occupied by Fe3+ cations.
In fields �50 T, it can be considered as the moment of only one
rigid sublattice which behaves like yttrium iron garnet (YIG,
x = 0). For x < 0.8, there is no compensation point [1]
because MHo < MFe is always satisfied. At T = 4 K,
with increasing field strength, the magnetization curves exhibit
jumps [11] corresponding to the passage from a spontaneous
ferrimagnetic configuration to a saturated ferromagnetic one,
via several canted phases separated by phase transitions of
spin-reorientation type. These transitions are rather sharp and
step-like, due to the anisotropy of the Ho3+ moments which
is so huge that they can only flip on a fixed direction related
to their local environment; they can therefore be described
to a first approximation by a model of an Ising ion whose
magnetization direction is along the local z-axis of each rare-
earth site (i.e. the Ho moments are strongly fixed to the fourfold
axes 〈001〉). This means that the six rare-earth sites become
two-by-two equivalent and one may consider only three Ho3+
sublattices. For a given magnetic field direction, a number of
distinct phases, differing in the orientation of the resultant of
Ho moments with respect to the applied field, can be stabilized
successively when the field is increased, and then, at low
temperature, magnetization jumps are observed, corresponding
to the successive reversal of the three magnetic moments of
the Ho3+ sublattices. When the magnetic field is applied
along [111], the maximum number of possible phases is four,
giving a total of three transitions between them. For [110]
and [001] directions, these numbers are reduced by one and
two, respectively. At T = 0 K, the three Ho moments are
equal, implying that during these discontinuous transitions
MHo jumps from one type of 〈111〉 direction to another,
with simultaneous and appropriate change in MFe orientation.
This model has been useful for a qualitative description of
the different orientational phases and the transitions involved
between them in such diluted rare-earth compounds, but it does
not account quantitatively for all the observations [4, 5, 10, 11].
In particular, when the temperature is raised the observed
magnetic transitions become smoother and smoother and
vanish all together more quickly at a critical temperature T ∗
(=18.9 K, present work). In our previous work [11] we showed
that any model based on an effective-spin Hamiltonian (ESH)
for the Ho3+ ions does not sufficiently improve the agreement
for the magnetization curves at 4 K.

The present paper is a natural continuation of previously
published results [11]. In order to build the phase diagrams
of Ho0.43Y2.57Fe5O12 single crystals at H ‖ [111] and
H ‖ [110], we have undertaken precise magnetization
measurements under high static magnetic fields up to 23 T
over the temperature range from 2 to 30 K. The computed free
energies (i.e. H –T phase diagrams) and magnetization curves
are found comparatively by the ESH technique and by the
direct diagonalization of a Hamiltonian including crystal-field
(CF) and exchange interactions in a mean-field approximation.
The latter is made possible by using an available set of CF
parameters, previously determined by Nekvasil [15], without
any adjustments. The results will be discussed and compared
with experimental data.

2. Experiment

The magnetization measurements were made by the extraction
method in static magnetic fields up to 23 T, on the same single
crystals of Ho0.43Y2.57Fe5O12 as in [11], where the samples
and the experimental methods were explicitly described. The
magnetization results are reported in Bohr magnetons per
Ho0.43Y2.57Fe5O12 formula unit and the magnetic field H is
the applied one. As expected, for an applied field along
〈111〉 and 〈110〉 directions, the experimental magnetization
curves show three and two rather sharp jumps, respectively,
which are smeared out and diminish when the temperature
is increased and disappear on reaching a critical temperature
T ∗ = 18.9 K for the two directions. The maximum abrupt
change of the magnetization occurs at the lowest temperatures.
The magnetization curve recorded at T = 4.2 K when the
field is applied along 〈111〉 is given in figure 8. The transition
fields are well determined by the anomalies on differentiated
magnetizations curves with respect to field. The temperature
dependence of these fields is shown in figures 5 and 6.

3. Crystal-field calculation

To calculate the energy levels of Ho3+ in D2-symmetry, one
can use the general approach with the irreducible tensor-
operator technique developed by Racah [16, 17]. In single-
particle crystal-field theory, the Hamiltonian in Wybourne’s
form may be written as [18–20]:

HCF =
∑

k,q>0,i

Bk
q (C (k)

q (i) + (−1)qC (k)
−q(i)) +

∑

k,i

Bk
0 C (k)

0 (i)

(1)
where C (k)

q (i) is a spherical tensor of rank k depending on the
coordinates of the i th electron and the summation involving
i is over all f electrons of the ion of the interest; the values
of k and q for which the parameters Bk

q are nonzero depend
on the site symmetry. The geometrical point symmetry of
rare-earth sites is D2, but the CF effective symmetry always
contains the inversion [19, 21], and thus the effective symmetry
is D2h , giving rise to nine independent CF parameters (k =
2, 4, 6; q = 0, 2, 4, 6; q � k). All the CF parameters are real
quantities.

For HoGG, the present state of the available optical
data prevents us from determining the parameters by fitting.
We have used the only set of parameters published so far.
These CF parameters were obtained by Nekvasil [15] by
interpolating the CF parameters appropriate to Dy3+:YGG [22]
and ErGG [23]. So we take for Ho3+:YIG the CF parameters
pertaining to Ho3+:YGG, because the cell parameters of YIG
and YGG are almost identical. These values of CF parameters
(table 1) correspond to D2-symmetry local axes used by
Hutching and Wolf [24]. The local axes (Oξ , Oη, Oζ ) of
the six magnetically inequivalent rare-earth sites used in the
calculations, and their relation with those of the crystal cubic
unit cell, are shown in figure 1. In this convention, Oξ lies
along a 〈001〉 direction and the quantization axis Oζ is chosen
to be in 〈110〉, which is the fourfold direction of the local
pseudocube of eight oxygens surrounding each rare-earth ion.
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Figure 1. Orientation of orthorhombic local axes (Oξ , Oη, Oζ )
relative to cubic crystal axes at the six rare-earth sites. One axis lies
along a 〈001〉 direction and the other two lie along a suitable 〈110〉
direction.

Table 1. Crystal-field parameters for Ho3+:YGG [15].

B2
0 B2

2 B4
0 B4

2 B4
4 B6

0 B6
2 B6

4 B6
6

(cm−1)a −16 94 −2092 270 924 544 −123 973 −57
(K)a −23 135 −3010 389 1330 783 −177 1400 −82
(K)b −12 166 −376 307 1390 49 −113 982 −78

a Wybourne normalization.
b Stevens normalization.

Low-lying levels are nearly pure Russell–Saunders states
(i.e. intermediate coupling is negligible), and the first excited
multiplet is situated at about 5200 cm−1 (7500 K), far from
the fundamental multiplet 5I8 [25]. In LS coupling scheme,
we have diagonalized the crystal-field Hamiltonian both within
the ground multiplet states and, to take account of J-mixing, in
the space of the first three multiplets, namely 5I8, 5I7 and 5I6.
The values of intermediate coupled and LS coupled reduced
matrix elements are given in table 3.2 of [19]. The spin–
orbit constant λ has been deduced from the energy splitting
between the two first multiplets tabulated by Osborn et al [26].
The value taken in this study is λ = −908 K (−631 cm−1).
The results of these calculations are displayed and compared
with the experimental energy levels from absorption and
emission optical spectra of Ho3+:YGG [27] in figure 2. Not
only there is no significant difference for ground multiplet
first levels (especially bellow 150 K) in one- and three-
multiplet calculations, but they are in excellent agreement with
those reported by Nekvasil [15], which involve intermediate
coupling. The ground state is a pair of two close singlets
�2–�3, separated by about 5 cm−1 (7 K). The nearest excited
level being about 25 cm−1 (36 K) away from it, in agreement
with the specific heat measurement of Onn et al [28] and our
inelastic neutron scattering data [29]. Optical data differ by
the non-D2 symmetry level at 8 cm−1 (11.5 K). Consequently,
for our purposes and in our experimental range of temperature,
we can therefore consider the action of the CF interaction as

Figure 2. Energy levels of the ground-state multiplet 5I8. We report
the results of our one- and three-multiplet calculations together with
the splitting from optical measurements [27] (to allow comparison,
the calculated ground level is assumed to be zero). The presence of a
third level at 8 cm−1 (11.5 K) on the optical data is questionable; this
level might not come from Ho3+ located on a site with D2 symmetry
as was assumed by Nekvasil [15].

Figure 3. Schematic representation of the arrangement of the initial
non-collinear ferrimagnetic structure in the mixed garnet
Hox Y3−x Fe5O12, with respect to the magnetic field direction (case of
H ‖ [111]). The effective field acting on Ho with moments MHo

form a double-umbrella structure, increases with H when x > 0.8
and decreases when x < 0.8. The value x ∼ 0.8 is the concentration
for which the spontaneous magnetization of the sample cancels at
T = 0 K.

a perturbation on the free ion ground multiplet 5I8 and use
the results of calculations within the multiplet states in an LS
coupling scheme. The Hamiltonian (1) removes completely
the degeneracy of the ground-state multiplet 5I8 and splits the
J manifold into 17 singlet levels described by the four �i

irreducible representations of the D2 group, namely 5�1 ⊕
4�2 ⊕ 4�3 ⊕ 4�4.
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Figure 4. Variation of the first eight energy levels for Ho3+:YGG, at
Ci (i = 1, 2, 3) sites as a function of an applied magnetic field. The
magnetic field is directed along the crystal threefold axis, H ‖ [111].
Note that, when considering Ho3+ in YIG, one should think of H as
representing the effective field, i.e. the exchange field minus the
applied magnetic field (x < 0.8).

Figure 5. Experimental phase diagram compared with those
calculated from crystal-field and effective-spin Hamiltonians:
H ‖ [110].

These energy levels and the associated eigenstates depend
strongly on the applied magnetic field and its direction. The
variation of the low-lying levels versus the magnitude of the
magnetic field, in the case of H‖[111], is shown in figure 4.

Figure 6. Experimental phase diagram compared with those
calculated from crystal-field and effective-spin Hamiltonians:
H ‖ [111].

We performed the numerical calculations for Ho3+ ions at
Ci (i = 1, 2, 3) sites, in Scilab [30] on a PC. In the mixed
holmium–yttrium iron garnet with a low concentration of
holmium (x < 0.8), the resultant moment of the rare-earth
sublattice MHo is smaller than the iron sublattice one, MFe.
Then the applied magnetic field is directed opposite to iron
sublattice exchange field acting on Ho3+ non-Kramers ion, and
the effect of its increasing is to reduce the gap between the
ground quasi-doublet levels produced by the exchange field
(see figures 3 and 4), pushing the system to (near) degeneracy.
To avoid this situation, the system modifies its magnetic
structure every time through a reorientation of the strongly
anisotropic rare-earth moments (i.e. a kind of ‘magnetic’ Jahn–
Teller effect, see [9]). The minimal splitting (near-crossing)
occurs when the applied magnetic field fully compensates the
exchange field (i.e. same splitting pattern as with CF alone). In
this situation, by increasing the distance of quasi-doublet from
excited levels, the applied magnetic field tends to give the Ho3+
ion an Ising behavior, and hence induces the jumps observed on
the isothermal magnetization curves.

4. Phase diagrams and discussion

In our previous calculation [11], only the lower closely lying
singlets were considered (fictitious-spin Hamiltonian). Now,
we deal with the action of the different interactions on the
Ho3+ ion described by its ground multiplet J with its 17
levels. To find the energy levels, we have to diagonalize
the effective Hamiltonian which simultaneously combines CF,
exchange field and applied magnetic field interactions. This
is unavoidable, because even when the CF is large, some

4
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low-lying energy levels are so close as to be strongly connected
by the Ho–Fe exchange interaction.

In the 2–30 K temperature range and 0–23 T field range,
MFe = 5 μB and is temperature and field independent. In fact,
it can be considered constant to within 0.3%. This is known
from the high-field magnetization data of YIG [31]. These
data also show that MFe is also insensitive to the exchange
field coming from the rare-earth sublattices. Then, if the nine
CF parameters are known, one can always determine the Ho
moment directions given the direction n(θ, φ) of MFe, under
an applied magnetic field H and at a temperature T . The
direction n(θ, φ) is the relevant parameter for discussing the
stability of the different magnetic phases. The free energy F
of N (Avogadro’s number) molecules of HoxY3−x Fe5O12 can
be written:

F(n,H, T ) = −μ0H ·MFe + x

6

(
−N kBT ln

6∏

q=1

Zq

)
(2)

with Zq = Tr e−β(H)q the single-particle canonical partition
function for the qth inequivalent site, occupied by one of the
noninteracting rare-earth ions. Here Tr stands for the trace and
β = (kBT )−1 the inverse temperature.

But the Hamiltonian of a rare-earth ion located at the qth
site is now given by:

(H)q = (HCF + HZeeman)q (3)

where HCF is the CF interaction as defined by (1), and
HZeeman is the interaction with the total effective field Heff =
H + Hmol. In order to model the exchange interaction
we used the molecular field Hmol = −n · MFe, treated
as a parameter and assumed to behave like a true magnetic
field. Here n is the isotropic molecular-field coefficient.
We deduced earlier [10] that its value can be taken equal
to 2.2 T mol/μB (i.e. Hmol = 11 T). The molecular field
is related to the exchange field (Hex = 27.5 T), which
acts only on the spin, by the relation Hex = (gJ/2(gJ −
1))Hmol. In addition, by considering it in the iron direction
we neglect the Ho3+–Fe3+ exchange interaction anisotropy
and the iron sublattice anisotropy which is known to be
very small in YIG. The effective field Heff is expressed
in the local coordinate system of each site q (q = 1–6).
For an ion of the system of Ho3+ at qth site, the state space
is spanned by the basis states {|
 i

q〉}, eigenvectors of (H)q

with the eigenvalues Ei
q . In the canonical ensemble, the single-

particle Boltzmann–Gibbs density operator at equilibrium is:

D̂q = Z−1
q e−β(H)q . (4)

The magnetic-moment operator of an ion at qth site is
defined by:

m̂q = (−gJμBĴ)q (5)

and the magnetic moment is the expectation value of this
operator, i.e. we have

mq = 〈
m̂q

〉 = Tr D̂qm̂q

=
17∑

i=1

−gJ μB

〈

 i

q

∣∣∣Ĵ
∣∣∣
 i

q

〉
Z−1

q e−βEi
q . (6)

We can therefore consider these q-site magnetic moments
as three-component classical vectors. They are expressed in the
corresponding local coordinate systems. We convert them into
the crystal coordinate system and, for N molecules, the overall
magnetic moment of the mixed holmium–yttrium garnet is
given by:

M = MFe + MHo = MFe + x

6

6∑

q=1

Mq (7)

where Mq = Nmq is the bulk magnetic moment of the
Ho3+ ion at the qth site. For comparison with measured
magnetization curves, the calculated magnetization of the
compound is obtained by finding the projection of (7) on
the direction of the applied magnetic field. The procedure
for precisely determining the different stable magnetic
configurations of the moments and their energies comparison
is exactly the same as in our previous work [11]. From the
eigenstates and energy levels of the Ho ions in the crystalline
and effective fields, we can calculate the magnetic structure
of Ho moments and the free energy F relative to the vector
MFe angles (θ, φ), for each given values of the field H and
temperature T . Thus, for fixed T and H the equilibrium
configurations are given by numerical minimization of F with
respect to the MFe angles (θ, φ). The unique difficulty with
numerical calculations of bulk properties could come from
the fact that the unit cell contains six rare-earth inequivalent
magnetic sites. But this is easily tackled owing to the
ability of the Scilab [30] programming language to handle
matrices. In the program, we just replace the block relative
to the effective-spin Hamiltonian by the block which does
the diagonalization of the CF and Zeeman Hamiltonians
together, without forgetting to take into account the Hutching
and Wolf convention of local axes (see figure 1) adopted
in CF calculations. It is worth noting that in constructing
the calculated phase diagram corresponding to effective-spin
Hamiltonian, we took the parameters found in [11] and the
local z-axis along the 〈001〉 direction, as usually adopted
within spin-Hamiltonian formalism. In all cases lowest minima
were determined unambiguously.

At zero field, the number of phases is none other
than the eight ferrimagnetic domains where the rare-earth
magnetization MHo is tied along the various equivalent easy
directions 〈111〉. When the applied field and MFe are parallel
to a high-symmetry direction, the non-collinear structure of
rare-earth moments adopts the same symmetry axis and the
phase is called coaxial. Since the change of orientation of
MFe is accompanied by a change of the magnitudes of the
magnetic moments of the Ho3+ ions at the different sites,
MHo is not parallel to 〈111〉 directions outside coaxial phases.
But one can always identify each phase by the appropriate
〈111〉 orientation that MFe (and then MHo) would have in zero
applied field (of course, we assume that the concerned phase
is still being favored when the field is removed). The labeling
may be continued unambiguously as earlier [11]. For peculiar
direction u of the applied magnetic field H , several of these
〈111〉 domains can have the same projection on H , and so
they are equivalent and constitute the same degenerate phase.

5
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Figure 7. Variation of the Ho moment for the different models in
coaxial phase (i.e. Heff ‖ [111]) as a function of applied field:
T = 2 K.

From the number n p(u) of inequivalent phases (Pi
u, i = 1 to

n p) we deduce the number of magnetization jumps which is
obviously equal to n p(u) − 1. For H ‖ [111] (below T ∗),
there are four phases, namely, in order of appearance when the
field increases, P1

111 = {[1̄1̄1̄]}, P2
111 = {[11̄1̄], [1̄11̄], [1̄1̄1]},

P3
111 = {[111̄], [1̄11], [11̄1]} and P4

111 = {[111]}, leading to
three phase transitions between them. This is the successive
reorientation of the moments of Ho sublattices from the
configuration with the resultant moment MHo ‖ [1̄1̄1̄] to the
saturated one with MHo ‖ [111]. For H ‖ [110], there are
two transitions between the three phases P1

110 = {[1̄1̄1̄], [1̄1̄1]},
P2

110 = {[11̄1̄], [1̄11̄], [11̄1], [1̄11]} and P3
110 = {[111̄], [111]}.

Figures 5 and 6 give a comparison between experimental
phase diagrams for 〈110〉 and 〈111〉 directions, and those
calculated in the frame of the effective-spin Hamiltonian model
(uniaxial model) and in the frame of the CF model. It may
be seen that the phase diagrams calculated from the CF levels
agree very well with the experimental ones. In particular,
the critical temperature T ∗, which equals 18.9 K for the
two directions. Considering the CF levels has induced a
diminution of the rare-earth moments MHo with increasing
temperature, which caused lowering of critical temperature.
This diminution is all the more pronounced as these moments
decrease significantly when the applied field increases. The
variation of moments versus the effective field is shown in
figure 7 for the different models: Ising, uniaxial (model B) and
CF (CEF).

In figure 8, we compare the isothermal magnetization
curves, calculated in the frame of the CF and the other models,
with the measured magnetization curve at T = 4.2 K. It can
be seen that the curve calculated from CF levels is in excellent
agreement with the experimental one. Now the magnetization

Figure 8. Experimental magnetization curve compared with those
calculated using the different models: H ‖ [111] and T = 4.2 K.

jumps are accurately calculated for the three transitions. We
have to note also the correct change of the magnetization
with the field in the initial coaxial phase, contrasting with the
‘absolute rigidity’ of the umbrella structure in the fictitious-
spin models where the moment magnitude is constant. The
non-collinear structure is a ‘double-umbrella’ which varies
with the field right at the start. In this phase, the field can only
open it and reduce the magnitude of the moments. When the
applied field increases from zero up to first transition field, the
moments at C1 and C′

1 sites change from 9.39 μB and 8.15 μB

to 8.58 μB and 7.94 μB, respectively. The angles for their
part change from 23.46◦ and 53.45◦ to 31.06◦ and 54.14◦,
respectively. The weak increase of the magnetization in this
phase and the smallness of the initial susceptibility fix an upper
limit for these two same-direction processes and give evidence
of an appreciable rigidity of this ‘double-umbrella’ magnetic
structure, i.e. the local anisotropy of the Ho ion.

Moreover, the calculated free energy indicates, as
expected, that 〈111〉 is the direction of easy magnetization.
At T = 1.5 K, the computed anisotropy energy is
�F = F[111] − F[001] = −7.6 cm−1/Ho3+. In our
case Hmol = 11 T, but if we take Hmol = 9.4 T as
in [14], we found �F = −6.4 cm−1/Ho3+, to compare with
�F = −6.6 cm−1/Ho3+ [14] and with magnetocrystalline
measurements which give �F = −6.9 cm−1/Ho3+ [32].
Contrary to the ESH model [11], the calculation now accounts
for a ‘double-umbrella’ magnetic structure, since we found the
following results at T = 4.2 K: MC′

1
= 8.15 μB, θC′

1
= 53.45◦

for the site C′
1, and MC1 = 9.39 μB, θC1 = 23.46◦ for the

site C1. These values are in good agreement with Nekvasil’s
calculation and RMN measurements [14], but disagree with
the neutron spectra refinements of Guillot et al [13], where
the moment MC1 was found far from 〈111〉 and outside D2

symmetry planes. As already noticed by Nekvasil [14], this
disagreement is probably due to the confusion between Ci -
and C′

i - sites during refinements in [13]. From our measured
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magnetization curve at T = 4.2 K (figure 8), we deduce a value
for the Ho3+ mean magnetic moment of 6.86 ± 0.21 μB, while
the calculated value is 6.73 μB.

5. Conclusion

We constructed the magnetic phase diagram of the Ho0.43Y2.57

Fe5O12 garnet by magnetization measurements under high
static magnetic fields on oriented single crystals in the low
temperature range 2–30 K. We have been able to show that,
starting from what is known about the CF effects on Ho3+
in these diluted garnets, an excellent agreement of calculated
magnetization curves and phase diagrams can be obtained if
one use some experimentally interpolated parameters and a
simple mean-field approximation for the Ho–Fe interaction
treated as an effective field. The CF approach has the
great merit of involving realistic parameters, contrary to the
fictitious-spin Hamiltonian which is not exempt from criticism
for rare-earth ions, especially for an even-electron system such
Ho3+. Although these CF parameters can be further improved,
this study is already a good validation for them.
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